Design of Sample Question Paper Mathematics, SA-I Class IX

Type of Question Marks per question		Total No. of Questions	Total Marks
M.C.Q. 1		10	10
SA-I	2	8	16
SA-II	3	10	30
LA	4	6	24
TOTAL		34	80

Blue Print Sample Question Paper Mathematics, SA-I SA-1

Topic / Unit	MCQ	SA(I)	SA(II)	LA	Total
Number System	2(2)	2(4)	3(9)	-	7(15)
Algebra	2(2)	1(2)	2(6)	3(12)	8(22)
Geometry	6(6)	4(8)	3(9)	3(12)	16(35)
Coordinate Geometry	-	1(2)	1(3)	-	2(5)
Mensuration	-	. 	1(3)	-	1(3)
TOTAL	10(10)	8(16)	10(30)	6(24)	34(80)

Note : Marks are within brackets.

Sample Question Paper Mathematics Class IX (SA-I)

Time: 3 to 3¹/₂ hours

M.M.: 80

General Instructions

- i) All questions are compulsory.
- ii) The questions paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each section C comprises of 10 questions of 3 marks each and section D comprises of 6 questions of 4 marks each.
- iii) Question numbers 1 to 10 in section A are multiple choice questions where you are to select one correct option out of the given four.
- iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- v) Use of calculators is not permitted.

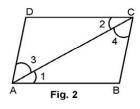
Section-A

Question numbers 1 to 10 carry 1 mark each.

1.	Deci	mal expansion	ofara	tional number	cannot	be		
	(a)	non-terminat	ting		(B)	non-termina	ting and	d recurring
	(C)	terminating			(D)	non-termina	ting and	d non-recurring
2.	One	of the factors o	of (9x²-1)-(1+3x)² is				
	(A)	3+x	(B)	3-x	(C)	3x-1	(D)	3x+1
З.	Whic	h of the follow	ing nee	ds a proof?				
	(A)	Theorem	(B)	Axiom	(C)	Definition	(D)	Postulate
4.		terior angle of ese angles is	atriang	gle is 110° and	the two	interior oppos	site ang	les are equal. Each
	(A)	70°	(B)	55°	(C)	35°	(D)	110°
5.	In ΔF	PQR, if ∠R > .	∠Q, the	en				
	(A)	QR>PR	(B)	PQ>PR	(C)	PQ <pr< td=""><td>(D)</td><td>QR<pr< td=""></pr<></td></pr<>	(D)	QR <pr< td=""></pr<>
6.		sides of a trian gle cannot be	igle are	of lengths 7 c	m and 3	3.5 cm. The le	ngth of	the third side of the
	(A)	3.6 cm	(B)	4.1 cm	(C)	3.4 cm	(D)	3.8 cm.

- 7. A rational number between 2 and 3 is
 - (A) 2.010010001... (B) $\sqrt{6}$ (C) 5/2 (D) $4-\sqrt{2}$
- 8. The coefficient of x^2 in $(2x^2-5)(4+3x^2)$ is
 - (A) 2 (B) 3 (C) 8 (D) -7
- 9. In triangles ABC and DEF, $\angle A = \angle D$, $\angle B = \angle E$ and AB=EF, then are the two triangles congruent? If yes, by which congruency criterion?
 - (A) Yes, by AAS (B) No (C) Yes, by ASA (D) Yes, by RHS
- 10. Two lines are respectively perpendicular to two parallel lines. Then these lines to each other are
 - (A) Perpendicular (B) Parallel
 - (C) Intersecting (D) incllined at some acute angle

SECTION - B

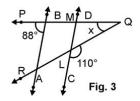

Question numbers 11 to 18 carry 2 marks each.

- 11. *x* is an irrational number. What can you say about the number *x*²? Support your answer with examples.
- 12. Let OA, OB, OC and OD be the rays in the anticlock wise direction starting from OA, such that ∠AOB = ∠COD = 100°, ∠BOC = 82° and ∠AOD = 78°. Is it true that AOC and BOD are straight lines? Justify your answer.

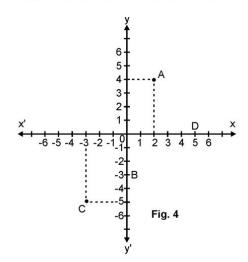
OR

In $\triangle PQR$, $\angle P=70^{\circ}$, $\angle R=30^{\circ}$. Which side of this triangle is the longest? Give reasons for your answer.

13. In Fig. 2, it is given that ∠1=∠4 and ∠3=∠2. By which Euclid's axiom, it can be shown that if ∠2 = ∠4 then ∠1 = ∠3.



14. Is
$$\left(\frac{8}{15}\right)^3 - \left(\frac{1}{3}\right)^3 - \left(\frac{1}{5}\right)^3 = \frac{8}{75}$$
?


How will you justify your answer, without actually calculating the cubes?

15. Evaluate
$$\left(\frac{-1}{27}\right)^{\frac{-2}{3}}$$
.

16. In Fig. 3, if ABIICD then find the measure of *x*.

- 17. In an isosceles triangle, prove that the altitude from the vertex bisects the base.
- Write down the co-ordinates of the points A, B, C and D as shown in Fig. 4.

SECTION C

Question numbers 19 to 28 carry 3 marks each.

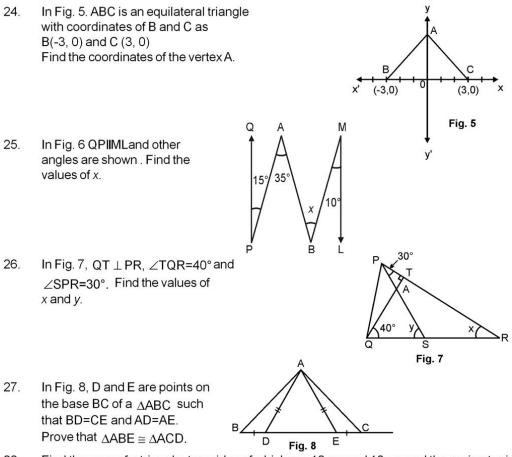
19. Simplify the following by rationalising the denominators

$$\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}}$$

OR

If
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = a - \sqrt{15}b$$
, find the values of a and b.

20. If a=9-4
$$\sqrt{5}$$
, find the value of a- $\frac{1}{a}$.


OR

If x =
$$3+2\sqrt{2}$$
, find the value of $x^2 + \frac{1}{x^2}$

- 21. Represent $\sqrt{3.5}$ on the number line.
- 22. If (x-3) and $x \frac{1}{3}$ are both factors of ax²+5x+b, show that a=b.
- 23. Find the value of $x^3+y^3+15xy-125$ when x+y=5.

OR

If a+b+c=6, find the value of (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c)

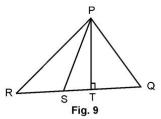
28. Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm.

SECTION D

Question numbers 29 to 34 carry 4 marks each.

29. Let p and q be the remainders, when the polynomials x³+2x²-5ax-7 and x³+ax²-12x+6 are divided by (x+1) and (x-2) respectively. If 2p+q=6, find the value of a.

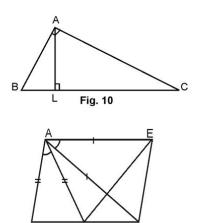
OR

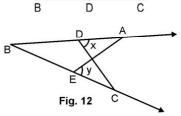

Without actual division prove that $x^4-5x^3+8x^2-10x+12$ is divisible by x^2-5x+6 .

30. Prove that :

 $(x+y)^{3} + (y+z)^{3} + (z+x)^{3} - 3(x+y)(y+z)(z+x) = 2(x^{3}+y^{3}+z^{3}-3xyz)$

- 31. Factorize x¹²-y¹².
- 32. In Fig. 9, PS is bisector of \angle QPR; PT \perp RQ and \angle Q> \angle R. Show that


$$\angle \text{TPS} = \frac{1}{2} (\angle Q - \angle R).$$



OR

In $\triangle ABC$, right angled at A, (Fig. 10), AL is drawn perpendicular to BC. Prove that $\angle BAL = \angle ACB$.

- 33. In Fig. 11, AB=AD, AC=AE and \angle BAD = \angle CAE. Prove that BC = DE.
- 34. In Fig. 12, if $\angle x = \angle y$ and AB = BC, prove that AE = CD.

Marking Scheme Mathematics Class IX (SA-I)

Section A

1.	(D)	2.	(D)	З.	(A)	4.	(B)	5.	(B)	
6.	(C)	7.	(C)	8.	(D)	9.	(B)	10.	(B)	1x10=10

SECTION B

11.	x ² may be irrational or may not be.	1
	For example ; if $x=\sqrt{3}$, $x^2=3 \rightarrow$ rational ; if $x=2+\sqrt{3}$, $x^2=7+4\sqrt{3} \rightarrow$ irrational	1/2+1/2
12.	No, AOC and BOD are not straight lines	
	: · i) ∠AOC = 182° ≠ 180°	1/2
	ii) ∠BOD = 178° ≠ 180°	1/2
	OR 82°	
	$\angle Q=180^{\circ}-[70^{\circ}+30^{\circ}]=80^{\circ}$ which is largest	1
	Longest side is PR	1
13.	By Euclid's I Axiom, which states.	
	["Things which are equal to the same thing are equal to one another"]	2
14.	The LHS can be written as	
	$\left(\frac{8}{15}\right)^3 + \left(\frac{-1}{3}\right)^3 + \left(\frac{-1}{5}\right)^3$ (i)	1⁄2
	As $\frac{8}{15} - \frac{1}{3} - \frac{1}{5} = \frac{8 - 5 - 3}{15} = 0$	1/2
	:. (i) = $3\left(\frac{8}{15}\right)\left(\frac{-1}{3}\right)\left(\frac{-1}{5}\right) = \frac{8}{75} = RHS$	1⁄2
	Justification : By the formula : If $a+b+c=0$, then $a^3+b^3+c^3=3abc$	1/2

SECTON-C

1/2+1/2+1/2+1/2

A(2, 4), B(0, -3), C(-3, -5) and D(5, 0)

_

19.
$$\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}} = \frac{2\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{(2)-(3)} + \frac{6\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{6-3}$$
 1+1/2

$$= 2\sqrt{18} - 2\sqrt{12} + 2\sqrt{12} - 2\sqrt{6} = 6\sqrt{2} - 2\sqrt{6}$$
OR
$$1+\frac{1}{2}$$

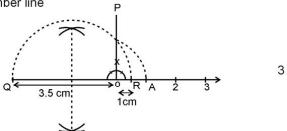
LHS =
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})}{5 - 3}$$
 1

$$=\frac{8+2\sqrt{15}}{2}=4+\sqrt{15}=a-\sqrt{15} b$$
 1

$$\Rightarrow$$
 a=4, b=-1 1

20.
$$a = 9 - 4\sqrt{5} \Rightarrow \frac{1}{a} = \frac{1}{9 - 4\sqrt{5}} = \frac{9 + 4\sqrt{5}}{81 - 80} = 9 + 4\sqrt{5}$$
 2

$$\therefore a - \frac{1}{a} = 9 - 4\sqrt{5} - 9 - 4\sqrt{5} = -8\sqrt{5}$$


$$x=3+2\sqrt{2} \Rightarrow x^{2}=9+8+12\sqrt{2} = 17+12\sqrt{2}$$

$$\frac{1}{x^{2}} = \frac{1}{17+12\sqrt{2}} = \frac{17-12\sqrt{2}}{289-288} = 17-12\sqrt{2}$$
1

OR

$$\therefore x^2 + \frac{1}{x^2} = 17 + 12\sqrt{2} + 17 - 12\sqrt{2} = 34$$

'A' respresents $\sqrt{3\cdot 5}$ on the number line 21.

22. Let
$$f(x) = ax^2+5x+b$$

 $f(3) = 0 \implies 9a+15+b=0 \implies 9a+b=-15$ -----(i) 1

$$f\left(\frac{1}{3}\right) = 0 \implies \frac{a}{9} + \frac{5}{3} + b = 0 \implies a + 9b = -15 \quad (ii)$$

/

$$(i) = (ii) \Rightarrow a=b$$
 1

23. If
$$x+y=5 \Rightarrow x+y+(-5)=0$$
 $\frac{1}{2}+\frac{1}{2}$

$$\therefore (x)^{3} + (y)^{3} + (-5)^{3} = 3(x)(y)(-5)$$

$$\Rightarrow x^3 + y^3 + 15xy = 125$$

$$\Rightarrow x^3 + y^3 + 15xy - 125 = 0$$

OR
$$a+b+c=6 \Rightarrow (2-a)+(2-b)+(2-c)=0$$
 1¹/₂

$$\therefore (2-a)^3 + (2-b)^3 + (2-c)^3 = 3(2-a)(2-b)(2-c)$$

24. AB=BC=AC=6 units as
$$\triangle$$
ABC is equilateral
AO bisects base BC
 \Rightarrow OB=3 units
 \therefore OA²=AB²-OB²=6²-3² = 27 \Rightarrow OA= $3\sqrt{3}$
1

$$\therefore$$
 Coordinates of A are $(0, 3\sqrt{3})$ 1/2

25.	Draw AD∥PQ, BE ∥LM∥PQ ⇒ ∠PAD=15° ⇒ ∠DAB=20° ⇒ ∠DAB=∠ABE=20° and ∠EBM=∠BML=10°	Q A E M 15° 20° 10°	1⁄2 1 1
	\Rightarrow x=30°	$7 \qquad \downarrow / 1$	1/2
26.	In right triangle QTR, x=90°-40°=50°	∦ : V ↓ P D B L	1½
	Again y is the exterior angle of ΔPSR		
	\Rightarrow y=30°+x=50°+30°=80°		11⁄2
27.	$BD+DE=CE+DE \Rightarrow BE=CD$		1
	In Δ 's ABE and ACD		
	BE=CD, AE=AD, ∠ADE=∠AED		
	$\therefore \ \Delta ABE \cong \Delta ACD \ (SAS)$		2
28.	S= $\frac{42}{2}$ = 21, let a=18cm, b=10cm, c=42-(28)=14cm		1
	$Ar(\Delta) = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{21(3)(11)(7)}$		1
	$= 21\sqrt{11}$ cm ²		1
	SECTION-D		
29.	Let P(x) = x ³ +2x ² -5ax-7 and Q(x) = x ³ +ax ² -12x+6		1
	P(-1) = p and Q(2) = q		
	∴ p=-1+2+5a-7 ⇒ p=5a-6		
	q=8+4a-24+6 ⇒ q=4a-10		1+1/2
	$2p+q=6 \Rightarrow 10a-12+4a-10=6$		
	\Rightarrow 14a=28 \Rightarrow a=2		1+1/2
	OR		
	$x^{2}-5x+6 = (x-2)(x-3)$		1/2+1/2
	$P(x) = x^4 - 5x^3 + 8x - 10x + 12$		
	P(2) = 16-40+32-20+12=0		1
	P(3) = 81-135+72-30+12=0		1
	\therefore (x-2)(x-3) divides P(x) completely		1
30.	Let x+y=p, y+z=q, z+x=r		
	∴ LHS = p³+q³+r³-3pqr		
	$= (p+q+r) (p^2+q^2+r^2-pq-qr-rp)$		1
	10		

$$p^{2}+q^{2}+r^{2}-pq-qr-rp = (x+y)^{2}+(y+z)^{2}+(z+x)^{2}-(x+y)(y+z)-(y+z)(z+x)-(z+x)(x+y) \qquad 1/2$$

$$= \begin{bmatrix} x^{2}+y^{2}+2xy+z^{2}+2yz+2zxz \\ -y^{2} - xy - yz - xz \\ x^{2} - xy - yz - xz \\ x^{2} - xy - yz - xz \end{bmatrix} = x^{2}+y^{2}+z^{2}-xy-yz-zx \qquad 1$$

$$\therefore (p+q+r)(p^{2}+q^{2}+r^{2}-pq-qr-rp) = 2(x^{3}+y^{2})(x^{2}+y^{2}+z^{2}-xy-yz-zx) = 2(x^{3}+y^{3}+z^{3}-3xyz) \qquad 1$$
31. $x^{12}-y^{12} = (x^{6}-y^{6})(x^{6}+y^{6}) \qquad 1$

$$= (x^{6}-y^{6})(x^{6}+y^{6}) \qquad 1$$

$$= (x^{6}-y^{6})(x^{6}+y^{6}) \qquad 1$$

$$= (x^{6}-y^{6})(x^{6}+y^{6})(x^{2}+y^{2})(x^{4}+y^{4}-x^{2}y^{2}) \qquad 1/2$$
32. $\angle Q + \angle R = 180^{\circ} - 2[90^{\circ} - \angle 1 + \angle TPS]$

$$= 180^{\circ} - 2[90^{\circ} - \angle 1 + \angle TPS]$$

$$\Rightarrow \angle 1P \leq \frac{1}{2}(\angle 1 - \angle 2) = \frac{1}{2}(\angle Q - \angle R) \qquad 1$$
OR
$$\angle B + \angle C = 90^{\circ} - \angle B = 90^{\circ} - (90^{\circ} - \angle C) = \angle C \qquad 1 + 1$$

$$\therefore \angle B A L = 90^{\circ} - \angle B = 90^{\circ} - (90^{\circ} - \angle C) = \angle C \qquad 1 + 1$$

$$\therefore \angle B A L = 4\angle C B \qquad 1$$
33. $\angle B A D + \angle D A C = \angle C A E + \angle C A D \Rightarrow \angle B A C = \angle D A E \qquad 1$
In $\triangle' s A B C$ and $A D E$

$$A B = AD, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D, A C = A E$$

$$A B = A D = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = A B = A D, A C = A E$$

$$A = A C B \qquad 1$$

$$A = B = A C = A C B \qquad 1$$

$$A = A B = A D, A C = A E$$

$$A = A D = A C = A C B \qquad 1$$

$$A = A B = A D, A C = A E$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

$$A = A C = A C B \qquad 1$$

1/2

∴ AE=CD

Now p+q+r=2(x+y+z)

Design of Sample Question Paper Mathematics, SA-I Class X

Type of Question Marks per question		Total No. of Questions	Total Marks	
M.C.Q. 1		10	10	
SA-I	2	8	16	
SA-II	3	10	30	
LA	4	6	24	
TOTAL		34	80	

Blue Print Sample Question Paper Mathematics, SA-I Class X

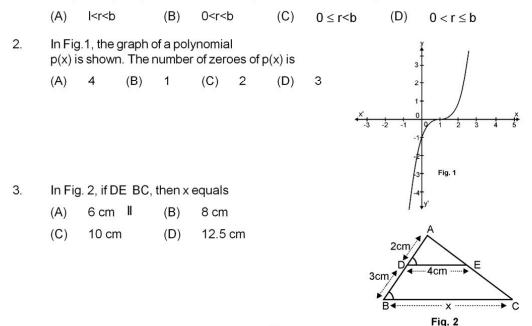
Topic / Unit	MCQ	SA(I)	SA(II)	LA	Total
Number System	2(2)	1(2)	2(6)		5(10)
Algebra	2(2)	2(4)	2(6)	2(8)	8(20)
Geometry	1(1)	2(4)	2(6)	1(4)	6(15)
Trigonometry	4(4)	1(2)	2(6)	2(8)	9(20)
Statistics	1(1)	2(4)	2(6)	1(4)	6(15)
TOTAL	10(10)	8(16)	10(30)	6(24)	34(80)

Note : Marks are within brackets.

Sample Question Paper Mathematics Class X (SA-I)

Time: 3 to 3¹/₂ hours

M.M.: 80

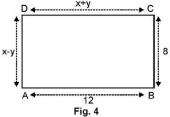

General Instructions

- i) All questions are compulsory.
- ii) The questions paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- iii) Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- iv) There is no overall choice. How ever, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- v) Use of calculators is not permitted.

Section-A

Question numbers 1 to 10 are of one mark each.

1. Euclid's Division Lemma states that for any two postive integers a and b, there exist unique integres q and r such that a=bq+r, where r must satisfy.



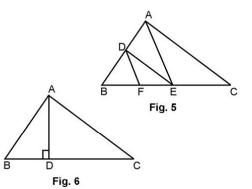
4.	If sin $3\theta = \cos (\theta - 6^{\circ})$, where (3θ) and $(\theta - 6^{\circ})$ are both acute angles, then the value of θ is											
	(A)	18°	(B)	24°	(C)	36°	(D)	30°				
5.	Given that $\tan\theta = \frac{1}{\sqrt{3}}$, the value of $\frac{\csc^2\theta \cdot \sec^2\theta}{\csc^2 + \sec^2\theta}$ is											
	(A)	-1	(B)	1	(C)	$\frac{1}{2}$	(D)	$-\frac{1}{2}$				
6.	5. In Fig. 3, AD=4 cm, BD = 3 cm and CB = 12 cm, then $\cot\theta$ equals											
	(A)	$\frac{3}{4}$	(B)					90°DD				
	(C)	$\frac{4}{3}$	(D)	<u>12</u> 5			θ Fig.	90°				
7.	Theo	decimal expar	ision of	147 120 ^{wi}	II terminate a	fter how mar	ny places	of decimal?				
	(A)	1	(B)	2	(C)	3	(D)	will not terminate				
8.	Thep	pair of linear e	quation	s 3x+2y	∕=5; 2x-3y=7 ł	nave						
	(A) (C)	One solution Many Solution		(B) (D)	Two solution	าร						
9.	If see	c A = cosec B	$s=\frac{15}{7},$	then A-	+B is equal to							
	(A)	Zero	(B)	90°	(C)	<90°	(D)	>90°				
10.		a given data wi sect at (20.5, 3					and the 'r	nore than ogive'				
	(A)	20	(B)	35	(C)	70	(D)	20.5				
				S	SECTION-	3						

Question numbers 11 to 18 carry 2 marks each.

- 11. Is 7x5x3x2+3 a composite number? Justify your answer.
- 12. Can (x-2) be the remainder on division of a polynomial p(x) by (2x+3)? Justify your answer.
- 13. In Fig. 4, ABCD is a rectangle.

Find the values of x and y.

14. If $7\sin^2\theta + 3\cos^2\theta = 4$, show that $\tan\theta = \frac{1}{\sqrt{3}}$


If
$$\cot\theta = \frac{15}{8}$$
, evaluate $\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}$

15. In Fig. 5, DEIIAC and DFIIAE. Prove that

$$\frac{FE}{BF} = \frac{EC}{BE}$$

16. In Fig. 6, AD \perp BC and BD= $\frac{1}{3}$ CD.

17. The following distribution gives the daily income of 50 workers of a factory:

Daily income (in rupees)	100-120	120-140	140-160	160-180	180-200
Number of Workers	12	14	8	6	10

Write the above distribution as less than type cumulative frequency distribution.

18. Find the mode of the following distribution of marks obtained by 80 students:

Marks obtained	0-10	10-20	20-30	30-40	40-50
Number of students	6	10	12	32	20

SECTION C

Question numbers 19-28 carry 3 marks each.

19. Show that any positive odd integer is of the form 4q+1 or 4q+3 where q is a positive integer.

20. Prove that $\frac{2\sqrt{3}}{5}$ is irrational.

OR

Prove that $(5 - \sqrt{2})$ is irrational.

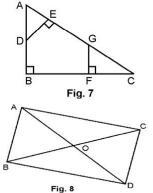
21. A person can row a boat at the rate of 5km/hour in still water. He takes thrice as much time in going 40 km upstream as in going 40 km downstream. Find the speed of the stream.

In a competitive examination, one mark is awarded for each correct answer while $\frac{1}{2}$ mark

is deducted for each wrong answer. Jayanti answered 120 questions and got 90 marks. How many questions did she answer correctly?

22. If α , β are zeroes of the polynomial x²-2x-15, then form a quadratic polynomial whose zeroes are (2 α) and (2 β).

23. Prove that $(\csc\theta-\sin\theta)(\sec\theta-\cos\theta) = \frac{1}{\tan\theta+\cot\theta}$.


- 24. If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, show that $\cos\theta \sin\theta = \sqrt{2}\sin\theta$
- 25. In Fig. 7, $AB \perp BC$, $FG \perp BC$ and

 $DE \perp AC$. Prove that

 $\Delta ADE \sim \Delta GCF$

26. △ABC and △DBC are on the same base BC and on opposite sides of BC and O is the point of intersections of AD and BC.

Prove that $\frac{\text{area}(\Delta ABC)}{\text{area}(\Delta DBC)} = \frac{AO}{DO}$

27. Find mean of the following frequency distribution, using step-deviation method:

Class	0-10	10-20	20-30	30-40	40-50
Frequency	7	12	13	10	8

0	R

The mean of the following frequency distribution is 25. Find the value of p.

Class	0-10	10-20	20-30	30-40	40-50
Frequency	2	3	5	3	р

28. Find the median of the following data

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	5	3	4	3	3	4	7	9	7	8

SECTION D

Question numbers 29 to 34 carry 4 marks each

29. Find other zeroes of the polynomial $p(x) = 2x^4+7x^3-19x^2-14x+30$ if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

30 Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

OR

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.

31. Prove that
$$\frac{\sec\theta + \tan\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{\cos\theta}{1 - \sin\theta}$$

OR

Evaluate $\frac{\sec\theta\csc(90^{\circ}-\theta) - \tan\theta\cot(90^{\circ}-\theta) + \sin^{2}55^{\circ} + \sin^{2}35^{\circ}}{\tan 10^{\circ}\tan 20^{\circ}\tan 60^{\circ}\tan 70^{\circ}\tan 80^{\circ}}$

32. If
$$\sec\theta + \tan\theta = p$$
, prove that $\sin\theta = \frac{p^2-1}{p^2+1}$

33. Draw the graphs of following equations :

2x-y = 1, x+2y = 13 and

- (i) find the solution of the equations from the graph.
- (ii) shade the triangular region formed by the lines and the y-axis
- 34. The following table gives the production yield per hectare of wheat of 100 farms of a village :

Production yield in kg/hectare	50-55	55-60	60-65	65-70	70-75	75-80
Number of farms	2	8	12	24	38	16

Change the above distribution to more than type distribution and draw its ogive.

Marking Scheme Mathematics Class X (SA-I)

Section A

1.	(C)	2.	(B)	З.	(C)	4.	(B)	5.	(C)	
6.	(D)	7.	(C)	8.	(A)	9.	(B)	10.	(D)	1x10=10

1

SECTION B

11.	7x5x3x2+3	= 3(7x5x2+1)
11.	1 101012 10	- 5(1 × 5×2 + 1)

= 3(7x5x2+1)= 3x71 (i)

	By Fundamental Theorem of Arithmetic, every composite number can be expressed as product of primes in a unique way, apart from the order of factors.	1
	: (i) is a composite number	
12.	In case of division of a polynomial by another polynomial the degree of remainder (polynomial) is always less than that of divisor	1
	:. (x-2) can not be the remainder when $p(x)$ is divided by (2x+3) as degree is same	1
13.	opposite sides of a rectangle are equal	
	∴ x+y=12(i) and x-y=8(ii)	1
	Adding (i) and (ii), we get 2x=20 or x=10	1⁄2
	and y=2	
	∴ x=10, y=2	1⁄2
14.	$7\sin^2\theta + 3\cos^2\theta = 4$ or $3(\sin^2\theta + \cos^2\theta) + 4\sin^2\theta = 4$	1
	$\Rightarrow \sin^2\theta = \frac{1}{4} \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$	1⁄2
	∴ $\tan\theta = \tan 30^\circ = \frac{1}{\sqrt{3}}$	1⁄2
	OR	

Given expression =
$$\frac{2(1+\sin\theta)(1-\sin\theta)}{2(1+\cos\theta)(1-\cos\theta)} = \cot^2\theta$$

$$=\left(\frac{15}{8}\right)^2 = \frac{225}{64}$$
 1

15.
$$\text{DEIIAC} \Rightarrow \frac{\text{BE}}{\text{EC}} = \frac{\text{BD}}{\text{DA}} \dots (i)$$
 1/2

$$DFIIAE \Rightarrow \frac{BF}{EF} = \frac{BD}{DA} \dots (ii)$$
^{1/2}

From (i) and (ii)
$$\frac{BE}{EC} = \frac{BF}{EF}$$
 or $\frac{CE}{BE} = \frac{FE}{BF}$ 1

16. Let $BD=x \Rightarrow CD=3x$, In right triangle ADC $CA^2=CD^2+AD^2$ (i)

and $AB^2 = AD^2 + BD^2$

$$\Rightarrow AD^{2} = AB^{2} - BD^{2} \dots (ii) \qquad \gamma_{2} + \gamma_{2}$$

Substituting (ii) in (i),
 $CA^{2} = CD^{2} + AB^{2} - BD^{2}$
OR $2CA^{2} = 2AB^{2} + 2(9x^{2} - x^{2}) = 2AB^{2} + BC^{2} (\because BC = 4x)$
1

$$\Rightarrow$$
 2CA²=2AB²+BC²

1	7	
1	1	
	•	•

	Less than					
Daily income	120	140	160	180	200	
Number of works	12	26	34	40	50	

:. Mode =
$$30 + \frac{32 - 12}{64 - 32} \times 10 = 30 + 6.25 = 36.25$$
 $1 + \frac{1}{2}$

SECTION C

19. Let a be a positive odd integerBy Euclid's Division algorithm a=4q+r

Where q, r are positive integes and
$$0 \le r < 4$$
 1

$$\therefore$$
 a = 4q or 4q+1 or 4q+2 or 4q+3

1/2

1/2

	But 4q and 4q+2 are both even	1/2
	\Rightarrow a is of the form 4q+1 or 4q+3	1
20.	Let $\frac{2\sqrt{3}}{5} = x$ where x is a rational number	
	$\Rightarrow 2\sqrt{3} = 5x \text{ or } \sqrt{3} = \frac{5x}{2} \dots (i)$	1
	As x is a rational number, so is $\frac{5x}{2}$	1/2
	$\therefore \sqrt{3}$ is also rational which is a contradiction as $\sqrt{3}$ is an irrational	1
	$\therefore \ \frac{2\sqrt{3}}{5} \text{ is irrational}$	1/2
	OR Let $5-\sqrt{2} = y$, where y is a rational number $\therefore 5-y = \sqrt{2}$ (i)	1
	As y is a rational number, so is 5-y	1/2
	:. from (i), $\sqrt{2}$ is also rational which is a contradiction as $\sqrt{2}$ is irrational	1
	$\therefore 5 - \sqrt{2}$ is irrational	1/2
21.	Let the speed of stream be x km/hour ∴ Speed of the boat rowing	
	upstream = (5-x) km/hour downstream = (5+x) km/hour	1
	\therefore According to the question,	
	$\frac{40}{5-x} = \frac{3x40}{5+x} \implies x = 2.5$	1+1⁄2
	∴ Speed of the stream = 2.5 km/hour OR	1/2
	Let the number of correct answers be x	
	∴ wrong answers are (120-x) in number	1/2
	$\therefore x - \frac{1}{2}(120 - x) = 90$	1

$$\Rightarrow \frac{3x}{2} = 150 \Rightarrow x=100$$

$$\therefore \text{ The number of correctly answered questions} = 100$$

$$1/2$$
22. $p(x) = x^2 - 2x - 15 \dots (i)$
As α , β are zeroes of (i), $\Rightarrow \alpha + \beta = 2$ and $\alpha\beta = -15$

$$1/2$$

zeroes of the required polynomial are 2lpha and 2eta

$$\therefore \text{ sum of zeroes} = 2(\alpha + \beta) = 4$$

Product of zeroes = 4(-15) = -60

 \therefore The required polynomial is x²-4x-60.

23. LHS can be written as
$$\left(\frac{1}{\sin\theta} - \sin\theta\right) \left(\frac{1}{\cos\theta} - \cos\theta\right)$$
 ¹/₂

$$=\frac{(1-\sin^2\theta)(1-\cos^2\theta)}{\sin\theta\cos\theta}=\sin\theta\cos\theta$$
1

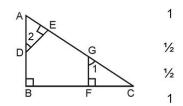
$$= \frac{\sin\theta\cos\theta}{\sin^2\theta + \cos^2\theta} = \frac{1}{\frac{\sin^2\theta}{\sin\theta\cos\theta} + \frac{\cos^2\theta}{\sin\theta\cos\theta}}$$
1

$$= \frac{1}{\tan\theta + \cot\theta}$$
^{1/2}

24.
$$\sin\theta + \cos\theta = \sqrt{2}\cos\theta \implies \sin\theta = (\sqrt{2} - 1)\cos\theta$$

or
$$\sin\theta = \frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\cos\theta$$
 1

or
$$\sin\theta = \frac{\cos\theta}{\sqrt{2}+1} \implies \cos\theta - \sin\theta = \sqrt{2}\sin\theta$$
 1


25.

$$\angle A + \angle C = 90^{\circ}$$

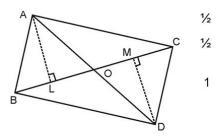
Also $\angle A + \angle 2 = 90^{\circ} \implies \angle C = \angle 2$

Similarly, ∠A=∠1

:. Δ 's ADE and GCF are equiangular

 $\therefore \Delta ADE \sim \Delta GCF$

1/2


1

26.

Draw AL \perp BC and DM \perp BC Δ 's AOL and DOM are similar

$$\therefore \quad \frac{AO}{DO} = \frac{AL}{DM}$$

$$\frac{\text{Area}(\Delta ABC)}{\text{Area}(\Delta BCD)} = \frac{\frac{1}{2}BC \cdot AL}{\frac{1}{2}BC \quad DM} = \frac{AO}{DO}$$

1

1/2

1/2+1

27.

28.

Class	0-10	10-20	20-30	30-40	40-50 T
Class marks (x _i)	5	15	25	35	45
Frequency (f _i)	7	12	13	10	8
$d_i = \frac{x_i - 25}{10}$	-2	-1	0	1	2
f _i d	-14	-12	0	10	16

$$\sum f_i = 50, \sum f_i d_i = 0$$

$$\overline{x} = A.M + \frac{\sum f_i d_i}{\sum f_i} x10 = 25+0 = 25.0$$

OR Class 10-20 0-10 20-30 30-40 40-50 2 3 5 3 Frequency (fi) р 5 25 35 45 Class mark (x,) 15 1 fixi 10 45 125 105 45p

 $\sum f_i = 13+p, \ \sum f_i x_i = 285+45p$ Mean = 25 (given)

$$\therefore 25x(13+p) = 285+45p$$
$$\Rightarrow 20p = 40 \Rightarrow p=2$$

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 Class Frequency 5 3 3 3 4 7 9 7 8 1/2 4 Cum. 5 8 12 15 18 22 29 38 45 53 Frequency

Median Class is 60-70

1/2

1

Median = I+
$$\frac{\left(\frac{n}{2} - cf\right)}{f}$$
xh ¹/₂

$$= 60 + \left(\frac{26.5 - 22}{7}\right) \times 10 = 66.43$$
 1+¹/₂

SECTION D

 $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$ 29. If two zeroes of p(x) are $\sqrt{2}$ and $\sqrt{2}$ $\therefore (x+\sqrt{2})(x-\sqrt{2})$ or x²-2 is a factor of p(x) 1 $p(x) \div (x^2-2) = [2x^4+7x^3-19x^2-14x+30] \div (x^2-2) = 2x^2+7x-15$ 11/2 Now $2x^2 + 7x - 15 = 2x^2 + 10x - 3x - 15$ 1/2 =(2x-3)(x+5)1/2 : other two zeroes of p(x) are $\frac{3}{2}$ and -5 1/2 Correctly stated given, to prove, construction and correct figure $4x\frac{1}{2}$ 30. 2 Correct proof 2 OR Correctly stated given, to prove, construction and correct figure $4x\frac{1}{2}$ 2 correct proof 2 LHS = $\frac{\sec\theta + \tan\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{\sec\theta + \tan\theta - (\sec^2\theta - \tan^2\theta)}{\tan\theta - \sec\theta + 1}$ 31. 1 $=\frac{(\sec\theta+\tan\theta)[1-\sec\theta+\tan\theta]}{(1-\sec\theta+\tan\theta)}=\sec\theta+\tan\theta=\frac{1+\sin\theta}{\cos\theta}$ 1+1 $=\frac{(1+\sin\theta)(1-\sin\theta)}{(1-\sin\theta)\cos\theta}=\frac{\cos\theta}{1-\sin\theta}$ 1 OR ->

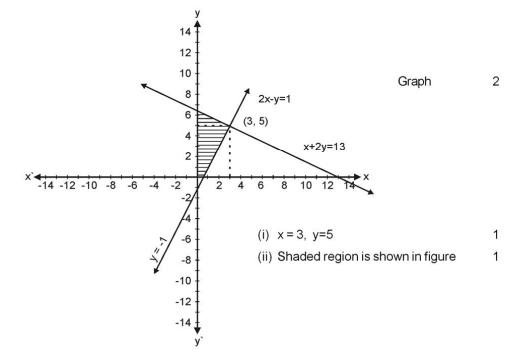
$$cosec(90^{\circ} - \theta) = sec \theta, cot(90^{\circ} - \theta) = tan \theta, sin 55^{\circ} = cos 35^{\circ}$$

tan 80^{\circ} = cot 10^{\circ}, tan 70^{\circ} = cot 20^{\circ}, tan 60^{\circ} = \sqrt{3}

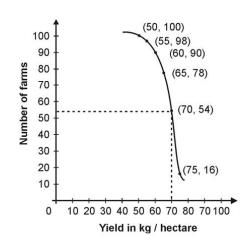
Given Expression becomes
$$\frac{(\sec^2\theta - \tan^2\theta) + (\sin^235^\circ + \cos^235^\circ)}{\tan^{10^\circ}\cot^{10^\circ}\tan^{20^\circ}\cot^{20^\circ}\sqrt{3}}$$

$$=\frac{1+1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$$

32.
$$\sec\theta + \tan\theta = p \implies \frac{1 + \sin\theta}{\cos\theta} = p$$
 1/2


$$\Rightarrow \left(\frac{1+\sin\theta}{\cos\theta}\right)^2 = p^2 \Rightarrow \frac{\left(1+\sin\theta\right)^2 - \cos^2\theta}{\left(1+\sin\theta\right)^2 + \cos^2\theta} = \frac{p^2 - 1}{p^2 + 1}$$

$$\operatorname{cr} \frac{(1-\cos^2\theta)+\sin^2\theta+2\sin\theta}{2+2\sin\theta} = \frac{p^2-1}{p^2+1}$$


or
$$\frac{2\sin\theta(1+\sin\theta)}{2(1+\sin\theta)} = \frac{p^2-1}{p^2+1}$$

or
$$\sin\theta = \frac{p^2 - 1}{p^2 + 1}$$
 1/2

33.

Classes	Frequency	Cumulative Frequency	(More than type)
50-55	2	50 or more than 50	100
55-60	8	55 or more than 55	98
60-65	12	60 or more than 60	90
65-70	24	65 or more than 65	78
70-75	38	70 or more than 70	54
75-80	16	75 or more than 75	16

